
A Transfer Type for Every Purpose

USB Complete 61

3

A Transfer Type for
Every Purpose
This chapter takes a closer look at USB’s four transfer types: control, bulk,
interrupt, and isochronous. Each transfer type has abilities and limits that
make the transfers suitable for different purposes. Table 3-1 compares the
amount of data that each transfer type can move at each of the three speeds.

Control Transfers
Control transfers have two uses. Control transfers carry the requests that are
defined by the USB specification and used by the host to learn about and
configure devices. Control transfers can also carry requests defined by a class
or vendor for any purpose.

Chapter 3

62 USB Complete

Availability
Every device must support control transfers over the default pipe at End-
point 0. A device may also have additional pipes for control transfers, but in
reality there’s no need for more than one. Even if a device needs to send a lot
of control requests, hosts allocate bandwidth for control transfers according
to the number and size of requests, not by the number of control endpoints,
so additional control endpoints offer no advantage.

Structure
Chapter 2 introduced control transfers and their stages: Setup, Data
(optional), and Status. Each stage consists of one or more transactions.

Every control transfer must have a Setup stage and a Status stage. The Data
stage is optional, though a particular request may require a Data stage.
Because every control transfer requires transferring information in both
directions, the control transfer’s message pipe uses both the IN and OUT
endpoint addresses.

In a control Write transfer, the data in the Data stage travels from the host to
the device. Control transfers that have no Data stage are also considered to
be control Write transfers. In a control Read transfer, the data in the Data
stage travels from the device to the host. Figure 3-1 and Figure 3-2 show the
stages of control Read and control Write transfers at low and full speeds on a
low/full-speed bus. There are differences, described later in this chapter, for

Table 3-1: The maximum possible rate of data transfer varies greatly with the
transfer type and bus speed.
Transfer Type Maximum data-transfer rate per endpoint (kilobytes/sec. with data

payload/transfer = maximum packet size allowed for the speed)

Low Speed Full Speed High Speed

Control 24 832 15,872

Interrupt 0.8 64 24,576

Bulk not allowed 1216 53,248

Isochronous 1023 24,576

A Transfer Type for Every Purpose

USB Complete 63

Figure 3-1: A control Write transfer contains a Setup transaction, zero or more
Data transactions, and a Status transaction. Not shown are the PING protocol
used in some high-speed transfers with multiple data packets and the split
transactions used with low- and full-speed devices on a high-speed bus.

Chapter 3

64 USB Complete

Figure 3-2: A control Read transfer contains a Setup transaction, one or more
data transactions, and a status transaction. Not shown are the split
transactions used with low- and full-speed devices on a high-speed bus.

A Transfer Type for Every Purpose

USB Complete 65

some high-speed transfers and for low- and full-speed transfers with 2.0
hubs on high-speed buses.

In the Setup stage, the host begins a Setup transaction by sending informa-
tion about the request. The token packet contains a PID that identifies the
transfer as a control transfer. The data packet contains information about
the request, including the request number, whether or not the transfer has a
Data stage, and if so, in which direction the data will travel.

The USB 2.0 specification defines 11 standard requests. Successful enumer-
ation requires specific responses to some requests, such as the request that
sets a device’s address. For other requests, a device can return a code that
indicates that the request isn’t supported. A specific class may require a
device to support class-specific requests, and any device may support ven-
dor-specific requests defined by a vendor-specific driver.

When present, the Data stage consists of one or more Data transactions,
which may be IN or OUT transactions. Depending on the request, the host
or peripheral may be the source of these transactions, but all data packets in
this stage are in the same direction.

As described in Chapter 2, if a high-speed control Write transfer has more
than one data packet in the Data stage, and if the device returns NYET after
receiving a data packet, the host may use the PING protocol before sending
the next data packet.

The Status stage consists of one IN or OUT transaction, also called the sta-
tus transaction. In the Status stage, the device reports the success or failure
of the previous stages. The source of the Status stage’s data packet is the
receiver of the data in the Data stage. When there is no Data stage, the
device sends the Status stage’s data packet. The data or handshake packet
sent by the device in the Status stage contains a code that indicates the suc-
cess or failure of the request.

If a host is performing a control transfer with a low- or full-speed device on
a high-speed bus, the host uses the split transactions introduced in Chapter
2 for all of the transfer’s transactions. To the device, the transaction is no dif-
ferent than a transaction with a 1.x host. The device’s hub carries out the
transaction with the device and reports back to the host when requested.

Chapter 3

66 USB Complete

Data Size
The maximum size of the data packet in the Data stage varies with the
device’s speed. For low-speed devices, the maximum is 8 bytes. For full
speed, the maximum may be 8, 16, 32, or 64 bytes. For high speed, the
maximum must be 64 bytes. These bytes include only the information
transferred in the data packet, excluding the PID and CRC bits.

In the Data stage, all data packets except the last must be the maximum
packet size for the endpoint. The maximum packet size for the Default
Control Pipe is in the device descriptor that the host retrieves during enu-
meration. If there are other control endpoints (this is rare), the size is in the
endpoint descriptor. If a transfer has more data than will fit in one data
transaction, the host sends or receives the data in multiple transactions.

In some control Read transfers, the amount of data returned by the device
can vary. If the amount is less than the requested number of bytes and is an
even multiple of the endpoint’s maximum packet size, the device should
indicate when it has no more data to send by returning a zero-length data
packet in response to the next IN token packet that arrives after all of the
data has been sent.

Speed
The host must make its best effort to ensure that all control transfers get
through as quickly as possible. The host controller reserves a portion of the
bus bandwidth for control transfers: 10 percent for low- and full-speed
buses and 20 percent for high-speed buses. If the control transfers don’t need
this much time, bulk transfers may use what remains. If the bus has other
unused bandwidth, control transfers may use more than the reserved
amount.

The host attempts to parcel out the available time as fairly as possible to all
devices. For each transfer, a single frame or microframe may contain multi-
ple transactions, or the transactions may be in different (micro)frames.

There are two opinions on whether control transfers are appropriate for
transferring data other than enumeration and configuration data. Some say

A Transfer Type for Every Purpose

USB Complete 67

that control transfers should be reserved as much as possible for servicing
the standard USB requests and other performing other infrequent configu-
ration tasks. This approach helps to ensure that the transfers complete
quickly by keeping the bandwidth reserved for them as open as possible. But
the USB specification doesn’t forbid other uses for control transfers, and
some believe that devices should be free to use control transfers for any pur-
pose. Low-speed devices have no other choice except periodic interrupt
transfers, which can waste bandwidth if data transfers are infrequent.

Control transfers aren’t the most efficient way to transfer data. In addition to
the data being transferred, each transfer with one data packet has an over-
head of 63 bytes (low speed), 45 bytes (full speed), or 173 bytes (high
speed). Each Data stage requires token and handshake packets, so stages
with larger data packets are more efficient.

A single low-speed control transfer with 8 data bytes uses 29% of a frame’s
bandwidth, though the transfer’s individual transactions may be spread
among multiple frames. In a control transfer with multiple data packets in
the Data stage, the data may travel in the same or different (micro)frames.

If the bus is very busy, all control transfers may have to share the reserved
portion of the bandwidth. At low speed, one 8-byte transfer fits in the
reserved portion of three frames. At full speed, one 64-byte transfer fits in
the reserved portion of one frame (though again, any single transfer may be
spread over multiple frames). At high speed, 512 transfers fit in the reserved
portion of one frame.

Devices don’t have to respond immediately to control-transfer requests. The
USB specification includes timing limits that apply to most requests. A
device class may require faster response to standard and class-specific
requests. Where stricter timing isn’t specified, in a transfer where the host
requests data from the device, a device may delay as long as 500 milliseconds
before making the data available to the host. To find out if data is available,
the host sends a token packet requesting the data. If the data is ready, the
device sends it immediately in that transaction’s data packet. If not, the
device returns a NAK to advise the host to retry later. The host keeps trying
at intervals for up to 500 milliseconds. In a transfer where the host sends

Chapter 3

68 USB Complete

data to the device, the device can delay as long as 5 seconds before accepting
all of the data and completing the Status stage (though the Status stage must
complete within 50 milliseconds). The 5 seconds don’t include any delays
the host adds between packets. In a transfer with no Data stage, the device
must complete the request and the Status stage within 50 milliseconds. The
host and its drivers aren’t required to enforce these limits.

Detecting and Handling Errors
If a device doesn’t return an expected handshake packet during a control
transfer, the host tries twice more. On receiving no response after a total of
three tries, the host notifies the software that requested the transfer and
stops communicating with the endpoint until the problem is corrected. The
two retries include only those sent in response to no handshake at all. A
NAK isn’t an error.

Control transfers use data toggles to ensure that no data is lost. In the Data
stage of a Control Read transfer, on receiving the data from the device, the
host normally returns an ACK, then sends an OUT token packet to begin
the Status stage. If the device for any reason doesn’t see the ACK returned
after the transfer’s final data packet, the device must interpret a received
OUT token packet as evidence that the handshake was returned and the
Status stage can begin.

Devices must accept all Setup packets. If a new Setup packet arrives before a
previous transfer completes, the device must abandon the previous transfer
and start the new one.

Bulk Transfers
Bulk transfers are useful for transferring data when time isn’t critical. A bulk
transfer can send large amounts of data without clogging the bus because the
transfers defer to the other transfer types and wait until time is available.
Uses for bulk transfers include sending data from the host to a printer, send-
ing data from a scanner to the host, and reading and writing to a disk. On
an otherwise idle bus, bulk transfers are the fastest transfer type.

A Transfer Type for Every Purpose

USB Complete 69

Availability
Only full- and high-speed devices can do bulk transfers. Devices aren’t
required to support bulk transfers, though a specific device class may require
it. For example, a device in the mass-storage class must have a bulk endpoint
in each direction.

Structure
A bulk transfer consists of one or more IN or OUT transactions (Figure
3-3). A bulk transfer is one-way: the transactions must all be IN transactions
or all OUT transactions. Transferring data in both directions requires a sep-
arate pipe and transfer for each direction.

A bulk transfer ends in one of two ways: when the expected amount of data
has transferred or when a transaction contains either zero data bytes or
another number of bytes that is less than the endpoint’s maximum packet
size. The USB specification doesn’t define a protocol for specifying the
amount of data in a bulk transfer. When needed, the device and host can use
a class-specific or vendor-specific protocol to pass this information. For
example, a transfer can begin with a header that specifies the number of
bytes to be transferred, or the device or host can use a class-specific or ven-
dor-specific protocol to request a quantity of data.

To conserve bus time, the host may use the PING protocol in some
high-speed bulk transfers. If a high-speed bulk OUT transfer has more than
one data packet and the device returns NYET after receiving a packet, the
host may use PING to find out when it’s OK to begin the next data transac-
tion. In a bulk transfer on a high-speed bus with a low- or full-speed device,
the host uses split transactions for all of the transfer’s transactions.

Data Size
A full-speed bulk transfer can have a maximum packet size of 8, 16, 32, or
64 bytes. For high speed, the maximum packet size must be 512 bytes. Dur-
ing enumeration, the host reads the maximum packet size for each bulk end-
point from the device’s descriptors. The amount of data in a transfer may be
less than, equal to, or greater than the maximum packet size. If the amount

Chapter 3

70 USB Complete

Figure 3-3: Bulk and interrupt transfers use IN and OUT transactions. Their
structure is identical, but the host schedules them differently. Not shown are the
PING protocol used in some high-speed bulk OUT transfers with multiple data
packets or the split transactions used with low- and full-speed devices on a
high-speed bus.

A Transfer Type for Every Purpose

USB Complete 71

of data won’t fit in a single packet, the host completes the transfer using
multiple transactions.

Speed
The host controller guarantees that bulk transfers will complete eventually
but doesn’t reserve any bandwidth for the transfers. Control transfers are
guaranteed to have 10 percent of the bandwidth at low and full speeds, and
20 percent at high speed. Interrupt and isochronous transfers may use the
rest. So if a bus is very busy, a bulk transfer may take very long.

However, when the bus is otherwise idle, bulk transfers can use the most
bandwidth of any type, and they have a low overhead, so they’re the fastest
of all. When an endpoint’s maximum packet size is less than the maximum
size allowed for the speed, some host controllers schedule no more than one
packet per frame, even if more bandwidth is available. So it’s best to specify
the maximum allowed packet size for bulk endpoints if possible.

At full speed on an otherwise idle bus, up to nineteen 64-byte bulk transfers
can transfer up to 1216 data bytes per frame, for a data rate of 1.216 Mega-
bytes/sec. This leaves 18% of the bus bandwidth free for other uses. The
protocol overhead for a bulk transfer with one data packet is 13 bytes at full
speed and 55 bytes at high speed.

At high speed on an otherwise idle bus, up to thirteen 512-byte bulk trans-
fers can transfer up to 6656 data bytes per microframe, for a data rate of
53.248 Megabytes/sec., using all but 2% of the bus bandwidth. The proto-
col overhead for a bulk transfer with one data packet is 55 bytes. Real-world
performance varies with the host-controller hardware and driver and the
host architecture, including latencies when accessing system memory. At this
writing, some high-speed hosts can perform a single transfer at up to around
35 Megabytes/sec.

Detecting and Handling Errors
Bulk transfers use error detecting. If a device doesn’t return an expected
handshake packet, the host tries up to twice more. The host also retries on
receiving NAK handshakes. The host’s driver determines whether the host

TE
AM
 F
LY

Chapter 3

72 USB Complete

eventually gives up on receiving multiple NAKs. Bulk transfers use data tog-
gles to ensure that no data is lost.

Interrupt Transfers
Interrupt transfers are useful when data has to transfer within a specific
amount of time. Typical applications include keyboards, pointing devices,
game controllers, and hub status reports. Users don’t want a noticeable delay
between pressing a key or moving a mouse and seeing the result on screen. A
hub needs to report the attachment or removal of devices promptly.
Low-speed devices, which support only control and interrupt transfers, are
likely to use interrupt transfers for generic data.

At low and full speeds, the bandwidth available for an interrupt endpoint is
limited, but high speed loosens the limits and enables an interrupt endpoint
to transfer almost 400 times as much data as full speed per unit of time.

The name interrupt transfer suggests that a device might spontaneously send
data that triggers a hardware interrupt on the host. But interrupt transfers,
like all other USB transfers, occur only when the host polls a device. The
transfers are interrupt-like, however, because they guarantee that the host
requests or sends data with minimal delay.

Availability
All three speeds allow interrupt transfers. Devices aren’t required to support
interrupt transfers, but a device class may require it. For example, a
HID-class device must support interrupt IN transfers for sending data to
the host.

Structure
An interrupt transfer consists of one or more IN transactions or one or more
OUT transactions. On the bus, interrupt transactions are identical to bulk
transactions (Figure 3-3). The only difference is the scheduling. An inter-
rupt transfer is one-way; the transactions must be all IN transactions, or all

A Transfer Type for Every Purpose

USB Complete 73

OUT transactions. Transferring data in both directions requires a separate
transfer and pipe for each direction.

An interrupt transfer ends in one of two ways: when the expected amount of
data has transferred, or when a transaction contains either zero data bytes or
another number of bytes that is less than the endpoint’s maximum packet
size. The USB specification doesn’t define a protocol for specifying the
amount of data in an interrupt transfer. When needed, the device and host
can use a class-specific or vendor-specific protocol to pass this information.
For example, a transfer can begin with a header that specifies the number of
bytes to be transferred, or the device or host can use a class-specific or ven-
dor-specific protocol to request a quantity of data.

In an interrupt transfer on a high-speed bus with a low- or full-speed device,
the host uses the split transactions introduced in Chapter 2 for all of the
transfer’s transactions. Unlike high-speed bulk OUT transfers, high-speed
interrupt OUT transfers can’t use the PING protocol when a transfer has
multiple transactions.

Data Size
For low-speed devices, the maximum packet size can be any value from 1 to
8 bytes. For full speed, the maximum packet size can range from 1 to 64
bytes. For high speed, the allowed range is 1 to 1024 bytes. In a device’s
default interface, interrupt endpoints must have a maximum packet size of
64 bytes or less. If the amount of data in a transfer won’t fit in a single trans-
action, the host uses multiple transactions to complete the transfer.

Speed
An interrupt transfer guarantees a maximum latency, or time between trans-
action attempts. In other words, there is no guaranteed transfer rate, just the
guarantee that there will be no more than the requested maximum latency
period between transaction attempts.

High-speed interrupt transfers can be very fast. A high-speed endpoint can
request up to three 1024-byte packets in each 125-microsecond microframe,
which works out to 24.576 Megabytes/sec. An endpoint that requests more

Chapter 3

74 USB Complete

than 1024 bytes per microframe is called a high-bandwidth endpoint. Win-
dows XP/Windows Server and earlier don’t support high-bandwidth inter-
rupt endpoints, however, so the achievable maximum for these operating
systems is 8.192 Megabytes/sec. If the host’s driver doesn’t support alternate
interfaces, the maximum is 64 kilobytes/sec. A full-speed endpoint can
request up to 64 bytes in each 1-millisecond frame, or 64 kilobytes/sec. A
low-speed endpoint can request up to 8 bytes every 10 milliseconds, or 800
bytes/sec.

The endpoint descriptor stored in the device specifies the maximum latency
period. For low-speed devices, the maximum latency can be any value from
10 to 255 milliseconds. For full speed, the value can range from 1 to 255
milliseconds. For high speed, the range is 125 microseconds to 4 seconds, in
increments of 125 microseconds. In addition, a high-speed interrupt end-
point with a maximum latency of 125 microseconds can request 1, 2, or 3
transactions per interval. The host controller ensures that transaction
attempts occur within the specified period.

The host may begin each transaction at any time up to the specified maxi-
mum latency since the previous transaction began. So, for example, with a
10-millisecond maximum at full speed, five transfers could take as long as
50 milliseconds or as little as 5 milliseconds. OHCI host controllers use val-
ues that correspond to powers of 2, with a maximum of 32 milliseconds. So
for a full-speed device that requests a maximum anywhere from 8 to 15 mil-
liseconds, an OHCI host will begin a transaction every 8 milliseconds, and a
maximum latency anywhere from 32 to 255 will cause a transaction attempt
every 32 milliseconds. However, devices shouldn’t rely on behavior that is
specific to a type of host controller and should assume only that the host
complies with the specification. (Chapter 8 has more about host-controller
types.)

Because the host is free to transfer data more quickly than the requested rate,
interrupt transfers don’t guarantee a precise rate of delivery. The only excep-
tions are when the maximum latency equals the fastest possible rate. For
example, with a 1.x host, a full-speed interrupt pipe configured for 1 trans-
action per millisecond will have bandwidth reserved for one transaction in
each frame.

A Transfer Type for Every Purpose

USB Complete 75

An otherwise idle bus can carry up to six low-speed, 8-byte transactions per
frame. Note, however, that the maximum bandwidth that a single low-speed
interrupt endpoint can request is 8 bytes every 10 milliseconds, and a
low-speed device can have no more than two interrupt endpoints. Devices
that need to transfer more than 800 bytes/sec. in each direction should be
full or high speed. The reason for the limitation on low-speed endpoints is
that low-speed traffic uses much more bandwidth compared to sending the
same amount of data at full or high speed. Limiting the amount of bus time
available to low-speed endpoints helps keep the bus available for other
devices.

At full speed, nineteen 64-byte transactions can fit in a frame. Since the
minimum time between transfers is one millisecond or more, each transac-
tion in the frame would have to be for a different endpoint address. In real-
ity, a host may not be able to schedule nineteen full-speed interrupt
transactions in a single frame, so the practical maximum number of inter-
rupt transactions per frame is likely to be less.

At high speed, the limit is two transfers per microframe, with each transfer
consisting of three 1024-byte transactions.

The protocol overhead per transfer with one data packet is 19 bytes at low
speed, 13 bytes at full speed, and 55 bytes at high speed. High-speed inter-
rupt and isochronous transfers combined can use no more than 80 percent
of a microframe. Full-speed isochronous transfers and low- and full-speed
interrupt transfers combined can use no more than 90 percent of a frame.
The section More about Time-critical Transfers later in this chapter has more
about the capabilities and limits of interrupt transfers.

Detecting and Handling Errors
If a device doesn’t return an expected handshake packet, host controllers in
PCs will retry up to twice more. The host typically retries without limit on
receiving NAKs. For example, a keyboard might sit idle for days before
someone presses a key.

Chapter 3

76 USB Complete

Interrupt transfers can use data toggles to ensure that all data is received
without errors. A receiver that cares only about the most recent data can
ignore the data toggle.

Isochronous Transfers
Isochronous transfers are streaming, real-time transfers that are useful when
data must arrive at a constant rate, or by a specific time, and where occa-
sional errors can be tolerated. At full speed, isochronous transfers can trans-
fer more data per frame than interrupt transfers, but there is no provision for
retransmitting data received with errors.

Examples of uses for isochronous transfers include encoded voice and music
to be played in real time. But data that will eventually be consumed at a con-
stant rate doesn’t always require an isochronous transfer. For example, a host
can use a bulk transfer to send a music file to a device. After receiving the
file, the device can play the music at the appropriate rate.

Nor does the data in an isochronous transfer have to be consumed at a con-
stant rate. An isochronous transfer is a way to ensure that a large block of
data gets through quickly on a busy bus, even if the data doesn’t need to
transfer in real time. Unlike with bulk transfers, once an isochronous trans-
fer begins, the host guarantees that the time will be available to send the data
at a constant rate, so the completion time is predictable.

Availability
Only full- and high-speed devices can do isochronous transfers. Devices
aren’t required to support isochronous transfers but a device class may
require it. For example, many audio- and video-class devices use isochronous
endpoints.

Structure
Isochronous means that the data has a fixed transfer rate, with a defined num-
ber of bytes transferring in every frame or microframe. None of the other

A Transfer Type for Every Purpose

USB Complete 77

transfer types guarantee bandwidth for a specific number of bytes in each
frame (except interrupt transfers with the shortest maximum latency).

A full-speed isochronous transfer consists of one IN or OUT transaction per
frame in one or more frames at equal intervals. High-speed isochronous
transfers are more flexible. They can request as many as three transactions
per microframe or as little as one transaction every 32,768 microframes. Fig-
ure 3-4 shows the packets in full-speed isochronous IN and OUT transac-
tions. An isochronous transfer is one-way. The transactions in a transfer
must all be IN transactions or all OUT transactions. Transferring data in
both directions requires a separate pipe and transfer for each direction.

The USB specification doesn’t define a protocol for specifying the amount
of data in an isochronous transfer. When needed, the device and host can
use a class-specific or vendor-specific protocol to pass this information. For

Figure 3-4: Isochronous transfers don’t have handshake packets, so occasional
errors must be acceptable. Not shown are the split transactions used with
full-speed devices on a high-speed bus or the data PID sequencing in
high-speed transfers with multiple data packets per microframe.

Chapter 3

78 USB Complete

example, a transfer can begin with a header that specifies the number of
bytes to be transferred, or the device or host can use a class-specific or ven-
dor-specific protocol to request a quantity of data.

Before selecting a device configuration that consumes isochronous band-
width, the host controller determines whether the requested bandwidth is
available by comparing the available unreserved bus bandwidth with the
maximum packet size and transfer rate of the configuration’s isochronous
endpoint(s). A full-speed transfer with the maximum 1023 bytes per frame
uses 69 percent of the bus’s bandwidth. If two full-speed devices want to
transfer 1023 bytes per frame, a 1.x host will refuse to configure the second
device because the data won’t fit in the remaining bandwidth.

Every USB 2.0 device with isochronous endpoints must have an interface
that requests no isochronous bandwidth so the host can configure the device
even if there is no reservable bandwidth available. In addition to this inter-
face and an interface that requests the optimum bandwidth for a device, a
device can have alternate interfaces that have smaller isochronous data pack-
ets or use fewer isochronous packets per microframe. The device driver can
then request to use an interface that transfers data at a lower rate when
needed. Or the driver can try again later in the hope that the bandwidth will
be available. After the host configures the device, the transfers are guaran-
teed to have the time they need.

Although isochronous transfers may send a fixed number of bytes per frame,
the data doesn’t transfer at a constant number of bits per second. Each trans-
action has overhead and must share the bus with other devices. So the data is
actually a burst at 12 Megabits/sec. or 480 Megabits/sec. and may occur any
time within the frame or microframe. To use the data at a constant rate,
such as sending the data to a speaker, the receiver must convert the received
bits to signals that span the interval.

Isochronous transfers may also synchronize to another data source or recipi-
ent, or to the bus’s Start-of-Frame signals. For example, a microphone’s
input may synchronize to the output of speakers. The USB specification
describes several methods of synchronizing to internal and external clocks.
The descriptor for a USB 2.0 isochronous endpoint can specify a synchroni-

A Transfer Type for Every Purpose

USB Complete 79

zation type and a usage value that indicates whether the endpoint is contains
data or feedback information used to maintain synchronization.

If a host is performing an isochronous transfer on a high-speed bus with a
full-speed device, the host uses the split transactions introduced in Chapter
2 for all of the transfer’s transactions. Isochronous OUT transactions use
start-split transactions, but not complete-splits because there is no status
information to report back to the host. Isochronous transfers don’t use the
PING protocol.

Data Size
For full-speed endpoints, the maximum packet size can range from 0 to
1023 data bytes. High-speed endpoints can have a maximum packet size up
to 1024 bytes. If the amount of data won’t fit in a single packet, the host
completes the transfer in multiple transactions.

Within a transfer, the amount of data in each frame doesn’t have to be the
same. For example, data at 44,100 samples per second could use a sequence
of 9 frames containing 44 samples each, followed by 1 frame containing 45
samples.

Speed
A full-speed isochronous transaction can transfer up to 1023 bytes per
frame, or up to 1.023 Megabytes/sec. This leaves 31% of the bus bandwidth
free for other uses. The protocol overhead is 9 bytes per transfer for a trans-
fer with one data packet, or less than 1% for a single 1023-byte transaction.
The minimum requested bandwidth for a full-speed transfer is one byte per
frame, which is 1 kilobyte per second.

A high-speed isochronous transaction can transfer up to 1024 bytes. An iso-
chronous endpoint that requires more than 1024 bytes per microframe can
request 2 or 3 transactions per microframe, for a maximum rate of 24.576
Megabytes/sec. An endpoint that requires multiple transactions per micro-
frame is called a high-bandwidth endpoint. The protocol overhead is 38
bytes per transfer for a transfer with one data packet.

Chapter 3

80 USB Complete

Because high-speed isochronous transfers don’t have to do a transaction in
every frame or microframe, they can request less bandwidth than full-speed
transfers. The minimum requested bandwidth is one byte every 32,678
microframes, which works out to one byte every 4.096 seconds. However,
any endpoint can transfer less data than the maximum reserved bandwidth
by skipping available transactions or by transferring less than the maximum
data per transfer.

On a high-speed bus, interrupt and isochronous transfers can use no more
than 80 percent of a microframe. On a full-speed bus, isochronous transfers
and low- and full-speed interrupt transfers combined can use no more than
90 percent of a frame. An otherwise idle high-speed bus can carry two isoch-
ronous transfers at the maximum rate.

The section More about Time-critical Transfers later in this chapter has more
about the capabilities of isochronous transfers.

Detecting and Handling Errors
The price to pay for guaranteed on-time delivery of large blocks of data is no
error correcting. Isochronous transfers are intended for uses where occa-
sional, small errors are acceptable. For example, listeners may tolerate or not
even notice a short dropout in voice or music. And in reality, under normal
circumstances, a USB transfer should experience no more than a very occa-
sional error due to line noise. Because isochronous transfers must keep to a
schedule, the receiver can’t request the sender to retransmit if the receiver is
busy or detects an error. A receiver that suspects errors could ask the sender
to resend the entire transfer, but this approach isn’t very efficient.

More about Time-critical Transfers
Just because an endpoint is capable of a rate of data transfer doesn’t mean
that a particular device and host will be able to achieve the rate. Several
things can limit an application’s ability to send or receive data at the rate that
a device requests. The limiting factors include bus bandwidth, the device’s

A Transfer Type for Every Purpose

USB Complete 81

capabilities, the capabilities of the device driver and application software,
and latencies in the host’s hardware and software.

Bus Bandwidth
When a device requests more interrupt or isochronous bandwidth than is
available, the host refuses to configure the device. Low- and full-speed inter-
rupt transfers use little bandwidth, so the host isn’t likely to deny a configu-
ration due to their requirements. High-speed interrupt transfers are a
different story. A high-speed endpoint can request up to three 1024-byte
data packets in each microframe, using as much as 40 percent of the bus
bandwidth. To help ensure that devices can enumerate without problems,
the interrupt endpoints in a device’s default interface must specify a maxi-
mum packet size no larger than 64 bytes. The device driver is then free to try
to increase the endpoint’s reserved bandwidth by requesting alternate inter-
face settings or configurations.

Isochronous endpoints can also cause bandwidth problems. A frequent
problem with isochronous endpoints on 1.x devices is that devices request
more bandwidth than is available. The host properly refuses to configure the
device and the user is left with a device that doesn’t work without knowing
why.

To help ensure that devices will enumerate without problems, the default
interface setting of a 2.0-compliant device must request no isochronous
bandwidth. In other words, the default interface can transfer no isochronous
data at all. An obvious way to comply is to include no isochronous end-
points in the default interface. After enumeration, the device driver is free to
attempt to request isochronous bandwidth by requesting an alternate inter-
face or configuration with an isochronous endpoint. Note that even
full-speed endpoints must meet this requirement to comply with USB 2.0.

Device Capabilities
If the host has promised that the requested USB bandwidth will be avail-
able, there’s still no guarantee that the device will be ready to send or receive
data when needed.

Chapter 3

82 USB Complete

To use interrupt and isochronous transfers effectively, both the sender and
receiver have to be capable of sending and receiving at the desired rate. A
device that is sending data must write the data to send into the endpoint’s
transmit buffer in time to enable the controller to place the data on the bus
on receiving an IN token packet. A device that is receiving data must read
the previous data from the endpoint’s buffer before the new data arrives.
Otherwise either the old data will be overwritten or the device will NAK or
drop the new data.

One way to help ensure that the device is always ready for a transfer is to use
double (or quadruple) buffering, as described in Chapter 6. Multiple buffers
give the firmware extra time to load the next data to transfer or to retrieve
just-received data.

Host Capabilities
The capabilities of the device driver and application software on the host
can also can affect whether all available transfers take place.

A device driver requests a transfer by submitting an I/O request packet
(IRP) to a lower-level driver. For interrupt and isochronous transfers, if there
is no outstanding IRP for an endpoint when its scheduled time comes up,
the host controller skips the transaction attempt. To ensure that no transfer
opportunities are missed, drivers typically submit a new IRP immediately on
completing the previous one.

The application software that uses the data also has to be able to keep up
with the transfers. For example, the driver for HID-class devices places
report data received in interrupt transfers in a buffer, and applications use
ReadFile to retrieve reports from the buffer. If the buffer is full when a new
report arrives, the driver discards the oldest report and replaces it with the
newest one. If the application can’t keep up, some reports are lost. A solution
is to increase the size of the buffer the driver uses to store received data or to
read multiple reports at once.

One way to help ensure that an application sends or receives data with min-
imal delays is to place the code that communicates with the device driver in

A Transfer Type for Every Purpose

USB Complete 83

its own program thread. The thread should have few responsibilities other
than managing these communications.

Doing fewer, larger transfers rather than multiple, small transfers can also
help. An application can typically send or request a few large chunks of data
more quickly than it can send or request many smaller chunks. When there
are multiple transactions per transfer, the lower-level drivers take care of the
scheduling.

Host Latencies
Another factor in the performance of time-critical USB transfers is the laten-
cies due to how Windows handles multi-tasking. Windows was never
designed as a real-time operating system that could guarantee a rate of data
transfer with a peripheral.

Multi-tasking means that multiple program threads run at the same time.
The operating system grants a portion of the available time to each thread.
Different threads can have different priorities, but under Windows, no
thread can be guaranteed CPU time at a defined, precise rate, such as once
per millisecond.

Latencies under Windows are often well under 1 millisecond, but in some
cases a thread can keep other code from executing for over 100 milliseconds.
Newer Windows editions tend to have improved performance over older
editions.

A USB device and its software have no control over what other tasks the
host CPU is performing and how fast the CPU can perform them, so deal-
ing with these latencies can be a challenge when timing is critical.

In general, it’s best to let the device handle any required real-time processing
and make the timing of the host communications as non-critical as possible.
For example, imagine a full-speed device that reads a sensor once per milli-
second. The device could attempt to send each reading to the host in a sepa-
rate interrupt transfer, but if a transfer is skipped for any reason, the
transfers will never catch up. If the device instead collects a series of readings
and transfers them using less frequent, but larger transfers, the timing of the

Chapter 3

84 USB Complete

bus transfers is less critical. Data compression can also help by reducing the
amount of data that must transfer.

